The Cauchy Problems for Einstein Metrics and Parallel Spinors

نویسندگان

  • BERND AMMANN
  • ANDREI MOROIANU
چکیده

We show that in the analytic category, given a Riemannian metric g on a hypersurface M ⊂ Z and a symmetric tensor W on M , the metric g can be locally extended to a Riemannian Einstein metric on Z with second fundamental form W , provided that g and W satisfy the constraints on M imposed by the contracted Gauss and CodazziMainardi equations. We use this fact to study the Cauchy problem for metrics with parallel spinors in the real analytic category and give an affirmative answer to a question raised in [15]. We also answer negatively the corresponding questions in the smooth category.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cauchy problem for metrics with parallel spinors

We show that in the analytic category, given a Riemannian metric g on a hypersurface M ⊂ Z and a symmetric tensor W on M , the metric g can be locally extended to a Riemannian Einstein metric on Z with second fundamental form W , provided that g and W satisfy the constraints on M imposed by the contracted Codazzi equations. We use this fact to study the Cauchy problem for metrics with parallel ...

متن کامل

A Local Existence Theorem for the Einstein-Dirac Equation

We study the Einstein-Dirac equation as well as the weak Killing equation on Riemannian spin manifolds with codimension one foliation. We prove that, for any manifold M admitting real Killing spinors (resp. parallel spinors), there exist warped product metrics η on M × R such that (M × R, η) admit Einstein spinors (resp. weak Killing spinors). To prove the result we split the Einstein-Dirac equ...

متن کامل

Curved Branes in AdS Einstein-Maxwell Gravity and Killing Spinors

We determine the Killing spinors for a class of magnetic brane solutions with Minkowski worldvolume of the theory of AdS Einstein Maxwell theories in d dimensions. We also obtain curved magnetic brane solutions with Ricci-flat worldvolumes. If we demand that the curved brane solution admits Killing spinors, then its worldvolume must admit parallel spinors. Classes of Ricci-flat worldvolumes adm...

متن کامل

On quasi-Einstein Finsler spaces‎

‎The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces‎. ‎Quasi-Einstein metrics serve also as solution to the Ricci flow equation‎. ‎Here‎, ‎the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined‎. ‎In compact case‎, ‎it is proved that the quasi-Einstein met...

متن کامل

Parallel and Killing Spinors on Spinc Manifolds

1 We describe in this paper all simply connected Spin c manifolds carrying parallel and real Killing spinors. In particular we show that every Sasakian manifold (not necessarily Einstein) carries a canonical Spin c structure with Killing spinors.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012